

EVALUATION OF THIXOTROPIC PARAMETERS FOR LING HEATHER AUTHENTICATION

Osés, S.M.; Ruiz, M.O.; Pascual Maté, A.; Bocos, A.; Fernández Muiño, M.A.; Sancho, M.

Universidad de Burgos

Spain

5th International Symposium on Bee Products, 7th-10th May, 2019

Introduction

Rheological

Ling heather honey (Calluna vulgaris (L.) Hull)

A standard of an and a standard of an and a standard of an and a standard of a standar	Malta 2019

OBJECTIVE

The aim of this work was to assess the reliability of four rheological parameters to help characterize ling heather honeys in comparison with multiflora honeys rich in ling heather pollens and bell heather samples (*Erica* spp.), some of them very close to ling heather monoflorality.

Materials & Methods

22 artisanal honeys. 2015. Spanish regions

HONEY	Chestnut	Multifloral	Honeydew	Heather	
Number	2	4	1	15	1 3 4 4 5 1 1 4 5 1 1 4 5 1 1 1 1 1 1 1 1 1
Abreviation	С	Μ	HD		
			Н	HL	L
		 Ericace <i>C. vulg</i> 	eae > 45% Faris < 10%	 Ericaceae > <i>C. vulgaris</i> 	 45% Ericaceae < 45% <i>C. vulgaris</i> > 10% Sensory characteristics

Ostwald-de Waele model $\mu = k\dot{\gamma}^{n-1}$

Exp. 1

Shear rate cycles

Linear relationship between n_{up} and *Calluna* pollen %

- Calluna > $10\% \rightarrow$ pseudoplastic fluids
- Calluna < 10% \rightarrow Newtonian or dilatant behaviour

Sample	n _{սբ 0.05}	
L1	0.93 ± 0.03	
L2	0.98 ±0.06	
L3	1.09 ± 0.04	
HL1	0.88 ±0.08	
HL2	0.90 ±0.03	
HL3	0.94 ± 0.12	
HL4	0.89 ± 0.04	
HL5	0.97 ± 0.02	
HL6	1.07 ± 0.03	
HL7	0.97 ± 0.07	
HL8	1.00 ± 0.06	
HL9	0.99 ± 0.08	
HL10	1.01 ± 0.02	
H1	1.01 ± 0.01	
H2	1.01 ± 0.04	
C1	1.03 ± 0.07	
C2	1.13 ±0.06	
HD	1.02 ± 0.03	
M1	0.93 ± 0.05	
M2	1.07 ± 0.10	
M3	1.11 ± 0.13	
M4	1.09 ± 0.02	

PSEUDOPLASTIC

RESULTS

Exp. 1

Shear rate cycles

Area of hysteresis loop $a = \int_{1}^{i} f(x) dx = (x_{2} - x_{1}) \frac{\Delta y_{1} + \Delta y_{2}}{2} + \dots + (x_{i} - x_{i-1}) \frac{\Delta y_{i-1} + \Delta y_{i}}{2}$

All honeys presented **a hysteresis loop** with quite different values of "**a**"

The values of "a" were higher for LING HEATHER honeys than for non-ling heather.

Sample	a [Pa/s]	
L1	2250	
L2	5549	
L3	2026	
HL1	6994	
HL2	3447	
HL3	3870	
HL4	7763	
HL5	3272	
HL6	4340	
HL7	8035	
HL8	729	
HL9	4548	
HL10	148	
H1	27	
H2	992	
C1	289	
C2	958	
HD	780	
M1	560	
M2	2058	
M3	429	
M4	4106	

γ

	Sample	a [Pa/s]	
	L1	2250	
	L2	5549	
	L3 ≍	2026	
	HL1	6994	
	HL2	3447	
	HL3	3870	
	HL4	7763	
	HL5	3272	
	HL6 🔀	4340	
	HL7	8035	
	HL8	729	
	HL9	4548	
	HL10	148	
L	H1	27	
	H2	992	
	C1	289	
	C2	958	
	HD	780	
	M1	560	
	M2	2058	
	M3	429	
	M4	4106	

L and HL samples were the honeys that showed a **thixotropic behavior**, but **samples HL6, HL10, and L3** did not follow that trend.

M1 \rightarrow % Calluna pollen higher

RESULTS

Exp. 2

Constant shear rate assays

 $Weltmann \ model \quad \tau = A - B(Int)$

Sample	B (Eq.3) [Pa]	r
L1	11.40	0.987
L2	8.48	0.978
L3	50.06	0.974
HL1	33.12	0.987
HL2	3.44	0.932
HL3	7.78	0.964
HL4	32.89	0.975
HL5	10.16	0.978
HL6	28.68	0.970
HL7	65.32	0.995
HL8	19.15	0.965
HL9	9.79	0.984
HL10	33.49	0.984
H1	-1.36	0.940
H2	-0.27	0.935
C1	-6.56	0.975
C2	-18.44	0.974
HD	-1.24	0.955
M1	-2.82	0.937
M2	-6.12	0.963
M3	-9.67	0.984
M4	-24 27	0 965

THIXOTROPIC

RHEOPECTIC

honey authentication

entication

