Legislation of honey criteria and standards

Andreas Thrasyvoulou, Chrysoula Tananaki, Georgios Goras, Emmanuel Karazafiris, Maria Dimou, Vasilis Liolios, Dimitris Kanelis & Sofia Gounari

To cite this article: Andreas Thrasyvoulou, Chrysoula Tananaki, Georgios Goras, Emmanuel Karazafiris, Maria Dimou, Vasilis Liolios, Dimitris Kanelis & Sofia Gounari (2018) Legislation of honey criteria and standards, Journal of Apicultural Research, 57:1, 88-96, DOI: 10.1080/00218839.2017.1411181

To link to this article: https://doi.org/10.1080/00218839.2017.1411181

Published online: 15 Jan 2018.
Differences between European legislation and revised Codex Alimentarius standards exist, and refer to the definition, the claim of the country of origin, honey of low enzymes and the adoption of Baker’s honey. Furthermore, different countries maintain dated quality criteria that do not coincide with the provisions of Codex or EU directives. The parameters that vary are mainly the moisture content, HMF, diastase activity, electrical conductivity, sugars and the microscopical justification. The necessity to adopt national rules is imposed mainly by the absence of provisions regarding the characteristics of monofloral honey, the declaration of the geographical origin of the product, the natural deviation of different types of honey and the quality rating of domestic honey. To address the problem that exists in international legislation regarding honey, we propose adopting minimum requirements as mandatory for all countries that produce, import or export honey.

Keywords: honey; legislation; directive; Codex; national; global standards

Introduction

Honey is a natural product with a diverse composition affected by many factors such as the botanical and geographical origin, the intensity of nectar flow, the climatic conditions, the beekeepers’ manipulations, the handling and packing procedure, the time of storage and the conditions of storage. Legislation cannot always follow the complexity of honey variations, and there are cases where the parameters of authentic and unprocessed honey fail to comply with the composition criteria of norms and also adulterated honey that had parameters within the established criteria (Thrasyvoulou & Manikis, 1995; Manikis & Thrasyvoulou, 1998; Tananaki & Thrasyvoulou, 2014). It is not uncommon for beekeepers to complain about wrongly judging their products from the market inspection bodies who forced them to pay penalties for natural diversion of particular characteristics that some monofloral honey has.

The situation with the honey legislation complicates even more if we consider that some countries issued national provisions, decisions, and guidelines to cope with the gap in the European and International legislation, despite the EU recommendations (EU, 2005). Most of them set limits to define the physicochemical, organoleptic and microscopic characteristics of monofloral honey, some have provisions regarding the country where the honey has been harvested, and several others are differentiated from the set criteria. The differences among the national provisions enhance the difficulties of the applicability of honey regulations and make the necessity of uniformity of honey legislation more urgent.

In this paper, we discuss the rules governing regulations of honey worldwide, compare the Council directives and regulations with the revised Codex and the national provisions of different countries, taking into account suggestions of experts from the International Honey Commission (IHC). Our objective is to show the differences in honey legislation among Codex, Directive and national provisions, indicate the problems created by the ambiguity of certain statutory standards and finally to propose amendments for improving the
application of European and international regulations in order to increase their efficiency and enhance the international competitiveness worldwide.

European directive 2001/110/EC and revised Codex standard for honey (Codex, 2001)

Definition

According to Codex “Honey is the natural sweet substance produced by honey bees from the nectar of plants or from secretions of living parts of plants or excretions of plant sucking insects”. The directive defines honey as “the natural sweet substance produced by Apis mellifera bees” differentiating it by this way from the honey that is produced by other species of bees (Micropis, Megapis, Meliponines). Countries, where honey is produced by other species of bees, should adopt additional provisions regarding the definition since there are differences in physicochemical, microscopical and organoleptic properties of honey produced by these different species of bees (Souza et al., 2006). So far there is no official name for honey that is produced from other bees in food science.

Names of the product

Codex and Directive have the same provisions regarding the names of the product with the exception of baker’s honey which is not cited in Codex.

Botanical origin

Both Codex and Directive provide supplemented information regarding the botanical origin of the product. Thus, honey can be labeled by floral or vegetable origin, if the product comes entirely or “mainly” from the indicated source and possesses the organoleptic, physicochemical and microscopic characteristics of the source. Filtered honey and baker’s honey cannot be supplemented by information referring to the floral or vegetable origin.

The important provision regarding the trade of monofloral honey cannot be applied since the mentioned characteristics are not defined and are not given either by Codex or by the Directive. Without legislating the characteristics of monofloral honey, their trade is defective, uncertain and incorrect and the numerous scientific publications regarding the characteristics of monofloral honey remain unexploited.

Some countries perceived that necessity established national regulations or technical criteria regarding the characteristics of monofloral honeys. Greece has national limits regarding the characteristics of eight monofloral types of honey (AXS, 2004). Germany has legislation of organoleptic, microscopical and physicochemical characteristics of ten floral and three honey-dew honeys (Leitärzte, 2011). Serbia has legislated the pollen limits of eight monofloral honey types (Serbia Ordinance, 2003) and Turkey provides physicochemical characteristics of almost all the monofloral honey that are produced in that country (Turkish Food Codex, 2012).

Traditionally, the botanical origin of honey is determined with the use of pollen analysis (melissopalynology). Although pollen analysis may have several limitations (Molan, 1998; Persano Oddo & Bogdanov, 2004), the combination of pollen analysis with physicochemical and organoleptic characteristics can overcome those limitations and give reliable results (Von der Ohe, Persano Oddo, Piana, Morlot, & Martin, 2004). Table 1 indicates the minimum amount of pollen that had been set so far in five European countries to define the word “mainly” regarding the determination of the botanical origin. Croatia defined twelve monofloral honeys (Croatia Ministry of Agriculture, 2009; Roberto Piro, Personal communication), Germany nine (Leitärzte des Deutschen Lebensmittelbuches, 2011), Serbia eight (Serbia Ordinance, 2003), Greece six (AXS Decision, 2004) and Italy two. The numbers are disappointing if we consider that more than 100 different monofloral honeys had been stated so far only in Europe. The encouraging element is that in most of the cases there is an agreement regarding the minimum percentage of pollen content required for the characterization of a monofloral honey among the countries.

Geographical origin

Codex requires the indication of the producing country on the label. Similarly, the European Directive states that the country or countries of origin where the honey has been harvested shall be indicated. However, according to Directive, if the honey originates from more than one member state or from third country that indication may be replaced with the words “blend of EU honey”, “blend of non-EU honey”, or “blend of EU and non-EU honey”. This provision is not valid in Codex.

We conducted an investigation in 31 supermarkets in Greece, and we found that in all of 116 imported honey samples the country of origin had been replaced by the word “blends”; although some of them were monofloral honey (Thrasyvoulou, 2013). In addition the indication “blends” was written on the label, with very small letters among other information while according to Reg. 1169/2011/EU it should be conspicuous and place in such a way as to be easily visible, shall not in
any way be hidden, obscured, detracted from or interrupted by any other written or pictorial matter or any other intervening material (EU, 2011).

It seems that some honey importers do not want to disclose the origin of the product especially when it is imported from third countries. The mask of the geographical origin of honey is contradictory to the following legislations of EU:

(a) Regulation 1169/2011/EU which describe that the place of origin, is a compulsory indication on the labeling and failure to provide such information might mislead the consumer about the true origin of the foodstuff (EU, 2011).

(b) Regulation 37/2010 EU that has established maximum residue limits (MRLs) in honey (EU, 2010). Some acaricides against varroa mites (Varroa destructor Anderson and Trueman) may be authorized in one European country and not in another. The acceptable limits of residues are legal only in countries where the substances in concern are authorized. By replacing the countries of origin with the word blend, the countries of origin remain unknown, residues’ limits cannot be checked, and the legislation of Europe cannot be applied.

Composition criteria for honey

Compositional criteria of honey according to Codex and honey Directive are indicated in Table 2. Differences exist only in the provision regarding the baker’s honey and the honey with a natural low content of enzymes.

Table 1. Minimum percentage of pollen required for the characterization of monofloral honeys in five European countries according to their national legislation: or provisions, decisions or guidelines.

<table>
<thead>
<tr>
<th>Pollen grains</th>
<th>Croatia (%)</th>
<th>Greece (%)</th>
<th>Germany (%)</th>
<th>Italy (%)</th>
<th>Serbia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbutus unedo</td>
<td>10</td>
<td>–</td>
<td>80</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Brassica napus</td>
<td>60</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>85</td>
</tr>
<tr>
<td>Calluna vulgaris</td>
<td>20</td>
<td>87</td>
<td>90</td>
<td>85</td>
<td>10</td>
</tr>
<tr>
<td>Castanea sativa</td>
<td>10 (5<sup>a</sup>)</td>
<td>3</td>
<td>20</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Citrus spp.</td>
<td>–</td>
<td>3</td>
<td>45</td>
<td>45</td>
<td>85</td>
</tr>
<tr>
<td>Erica spp.</td>
<td>–</td>
<td>45</td>
<td>45</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Eucalyptus spp.</td>
<td>–</td>
<td>45</td>
<td>45</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>General monofloral</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>> 30</td>
<td>> 30</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>10 (5<sup>a</sup>)</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Phacelia tanacetifolia</td>
<td>60</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Rabiria pseudacacia</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>15 (10<sup>b</sup>)</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Salvia officinalis</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Satureja montana</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Taraxacum officinalis</td>
<td>–</td>
<td>18</td>
<td>–</td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>Thymus spp.</td>
<td>25 (10<sup>b</sup>)</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Trifolium, melilotus</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>Helianthus</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

^aWith characteristic organoleptic properties of honey for particular plant species (smell, taste, color).

Moisture content

Honey produced by bees has a moisture content that depends on flower sources, beekeeping manipulations, and climatic conditions. Usually, honey from well-sealed combs has the water content less than 18%. Codex and European Directive set limits for moisture content no more than 20% with the exception of heather honey (*Calluna vulgaris*) which is permitted having up to 23%. The following two reservations concern this provision:

(a) Very rarely the water content of honey exceeded 18%. The tolerability permits beekeepers to collect unripe honey which subsequently is subjected to fermentation and spoilage by the presence of several yeast species.

(b) Not only *Calluna* honey, but also other monofloral honey types such as *Erica arborea*, *Erica manipuliflora*, *Erica verticillata*, Clover honey (*Trifolium* spp.), *Arbutus unedo*, *Polygonum aviculare* may have the water content that exceeds 20%.

Fructose and glucose content

Both Codex and Directive required the sum of fructose and glucose content for blossom honey to exceed 60% and for honeydew honey and blends of honeydew honey with blossom honey to exceed 45%. According to the above, it is allowed to have blends of a forest with blossom honey but it is not permitted to have blends of blossom honey with honeydew honey. In practice, bees may collect nectar from blossom and honeydew secretions from plants that share the same flowering period and the same geographical origin. In case that blossom honey surpasses the honeydew honey, it should be
allowed to have blends of blossom honey and forest honey, provided that glucose and fructose are more than 60% and electrical conductivity is less than 8 mS.cm\(^{-1}\). Countries that have national provisions regarding blends of blossom and forest honey are Turkey, Poland, and Serbia.

To our knowledge, the sum of glucose and fructose is fulfilled by most of the floral honey. Lower values are mainly due to natural blends with honeydew secretions or mixtures after human intervention. Contrary to that, there are honeydew honey types from fir, pine, and spruce that may have the sum of fructose and glucose content lower than the standards and exceptions should be considered. For example, most of the Greek fir honey have the sum of fructose and glucose lower than 40% (Manikis, Vartani, Dimou, & Thrasyvoulou, 2011) and this is known to the Greek control bodies which show tolerance toward this discrepancy. Contrary to that, Greek pine honey some times may has lower than 45% fructose and glucose content and beekeepers are accused of having a non-compliant product simply because the control bodies were not informed.

Sucrose content

The general provision for sucrose content is less than 5% with the exception listed in Table 2 for both Codex and Directive. From these exceptions, only Eucalyptus, Robinia, Citrus and Lavandula are listed as important for honey production and can be found predominantly in honey (Persano Oddo & Piro, 2004). The sucrose content of honey from Eucalyptus generally is less than 4.2% (Persano Oddo & Piro, 2004) while honey from dandelion (Taraxacum officinale) may occasionally have sucrose more than 5% (Warnier Marie personal communication).

Electrical conductivity

Blossom and honeydew honey are differentiated by electrical conductivity. Electrical conductivity less than 0.8 mS.cm\(^{-1}\) indicates blossom and more than 0.8 mS.cm\(^{-1}\) indicates honeydew honey with the exceptions listed in Table 2. Additional blossom monofloral honey types with higher electrical conductivity that should be included in the list of exceptions are honey from P. aviculare (Knot weed), Gossypium sp (cotton honey), Paliurus spina-christi (Jerusalem thorn) (Tananaki, 2015) and Persea americana (avocado honey) (Antonio Bentabol personal communication).

Diastase activity and HMF

Diastase usually exceeds 25 DN in fresh unprocessed samples while HMF is virtually absent or very low. The higher values of HMF found in fresh, unprocessed samples were 10 to 15 mg.kg\(^{-1}\). Diastase is inactivated and HMF is formed when honey is heated for processing and blending. Both changes occur also during storage. When the diastase drops below the limit of 8 DN or HMF exceeds 40 mg.kg\(^{-1}\), the quality of honey is considered as degraded and the product should be designated as baker’s honey. Diastase and HMF are also used to detect adulterated honey by excess feeding with syrup since diastase activity decreases dramatically and HMF remains unchanged.

Table 2. Compositional criteria of honey.

<table>
<thead>
<tr>
<th>Composition criteria</th>
<th>Directive 2001/110 EU</th>
<th>Honeydew honey*</th>
<th>Revised CODEX 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture %</td>
<td><20 Calluna and baker’s honey <23Baker’s honey from Calluna <25</td>
<td><20 The same No indication for baker’s honey</td>
<td></td>
</tr>
<tr>
<td>Fructose + glucose %</td>
<td>>60 –</td>
<td>>45 The same</td>
<td></td>
</tr>
<tr>
<td>Sucrose %</td>
<td><5 Robinia, Medicago, Banksia, Hedysarum, Eucalyptus, Eucryphiapp., and Citrus <10Lavandula & Borago <15</td>
<td><5 The same</td>
<td></td>
</tr>
<tr>
<td>Water-insoluble %</td>
<td><0.1 Pressed honey <0.5</td>
<td><0.1 The same</td>
<td></td>
</tr>
<tr>
<td>Electrical conductivity mS.cm(^{-1})</td>
<td><0.8 Chestnut, Arbutus, Erica, Eucalyptus, Tilia, Calluna, Manuka and Melaleuca</td>
<td>>0.8 The same</td>
<td></td>
</tr>
<tr>
<td>Free acid meq.kg(^{-1})</td>
<td><50 Baker’s honey <80</td>
<td><50 The same</td>
<td></td>
</tr>
<tr>
<td>Diastase activity DN**</td>
<td>>8 baker’s honey and honey with low natural enzyme content: >3 when HMF is less than 15 mg.kg(^{-1})</td>
<td>>8 Honeys with low natural enzyme content: > 3 DN</td>
<td></td>
</tr>
<tr>
<td>HMF mg.kg(^{-1})***</td>
<td><40 baker’s honey Honeys of tropical climate and blends of these honey <80</td>
<td><40 Honeys of tropical climate and blends: < 80</td>
<td></td>
</tr>
</tbody>
</table>

*Honeydew honey and blends of honeydew honey with blossom honey.

**Determined after processing and blending.
Both Codex and European Directive point out that there are honey types with low natural enzymes and as example Directive gives the citrus honey. According to the Directive, honey with low natural diastase activity should not have HMF more than 15 mg.kg$^{-1}$. This provision is unfair for honey types with low natural enzymes because HMF in fresh and unprocessed honey may reach 12–13 mg.kg$^{-1}$ and with little processing the 15 mg.kg$^{-1}$ HMF can easily be exceeded. Figure 1, indicates HMF and diastase of 61 samples of citrus honey that were collected directly from colonies and analyzed fresh and unprocessed (Tananaki, 2013). The first 15 citrus samples have zero HMF and the low diastase activity poses no problem to the marketing of the product. The last 7 samples (No. 54–61) have HMF more than 10 mg.kg$^{-1}$ and with little processing, blending or storage, HMF can easily reach or exceed the limit of 15 mg.kg$^{-1}$. Thus, in this case, 11.5% of authentic and unprocessed citrus honey cannot be marketed. Codex doesn’t connect the low content of diastase with the HMF and it doesn’t give citrus as an example of such honey types. This is reasonable since there are many other honey types with low enzymes like Robinia, Rosmarinus, Erica, Taraxacum, Arbutus spp., spring Pine honey and others that should be listed or be known to the control bodies. Other countries like Brazil, Canada, Russia, Turkey, and Serbia accept honey that have diastase more than 3 DN when HMF is less than 15 mg.kg$^{-1}$.

Both Codex and Directive require that diastase activity and HMF content should be determined after processing and blending. The word “after” should be further clarified since can be interpreted that honey should be analyzed for HMF and diastase activity right after processing and blending or anytime during storage.

The question remains is whether beekeepers or Packers should be regarded responsible for changes that occur in the natural product during storage.

Differences between national provisions, Codex and European directive

Codex has voluntary application and in many cases, countries used it as a basis for their national legislations. In practice, the honey specifications of Codex are not always applied and many differentiations exist. Similarly, some member states of Europe in addition to the European directive, adopted their own diverse national provisions, or guidelines mainly to assist the trade of their domestic product. Table 3 shows the variations that different countries have from Codex and Directive.

Moisture content

One of the most variable specification is the moisture content which usually is set to most strict criteria (<18%) and is associated with quality grades. For example the Canadian classification of quality grades designated for Canada No. 1 moisture <17.8%, for Canada No.2 <18.6% and for Canada No. 3 <20% (Canada Agricultural Products Act, 2011). These grades may be used only for honey that meets the color, the flavor, the purity, the packing, and labeling requirements and it concerns only domestic products. Similarly, the German guidelines for honey that classified honey into quality grades set moisture content <18% for both Auslese and Feine Auslese grades (Leitätze des Deutschen, 2011). Guidelines are not a law, but have the status of a legal norm and define additional criteria for different
Table 3. Comparison of national legislations to Codex and council directive.

<table>
<thead>
<tr>
<th>Countries</th>
<th>Provisions/Stipulation/Decisions/Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Provisions: moisture <18%; ash <0.6% fl, <1.0% hd; apparent reducing sugars >65% fl, >60% hd; apparent sucrose <8% fl, <10% hd; dextrin <3% fl</td>
</tr>
<tr>
<td>Belgium</td>
<td>Stipulation: sucrose <10% dandelion honey</td>
</tr>
<tr>
<td>Brazil</td>
<td>Provisions: reducing sugars >65% fl, >60% hd; apparent sucrose <6% fl, <15% hd; minerals <0.6% fl, <1.2% hd</td>
</tr>
<tr>
<td>Canada</td>
<td>Provisions: apparent reducing sugars >65% fl, >60% hd; moisture <20%; apparent sucrose <5% fl, <10% hd; water insoluble solids <0.1% not pressed honeys, <0.5% pressed honeys; ash <0.6% fl, <1.0% hd; acid <40 meq.kg⁻¹; diastase > 8 DN; HMF <40 mg.kg⁻¹</td>
</tr>
<tr>
<td>China</td>
<td>Provisions: moisture <20%; Grade A, <24% Grade B; fru+glu >60%; sucrose <5%; free acidity <4 ml/100; diastase >4 DN; HMF <40 mg.kg⁻¹; ash <0.4%; electrical conductivity <0.8 mS.cm⁻¹</td>
</tr>
<tr>
<td>Colombia</td>
<td>Provisions: HMF <60 mg.kg⁻¹; honey from tropical areas; reducing sugars >65% fl; moisture <18%; free acidity <40 meq.kg⁻¹; diastase >3 DN; apparent sucrose <5%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Decision: HMF <20 mg.kg⁻¹; moisture <18%; apparent sucrose <10%</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Provisions: apparent reducing sugars >65%; water insoluble solids <0.1%; minerals <0.6%; free acidity <40 meq.kg⁻¹; diastase <3 DN; HMF <40 mg.kg⁻¹; apparent sucrose <10%</td>
</tr>
<tr>
<td>India</td>
<td>Provisions: moisture <20% special grade, <22% grade A, <25% standard grade; reducing sugars <70%special grade, <65% A grade and standard grade; apparent sucrose <5%; fru/glu ratio >1; ash <0.5%; HMF <80 mg.kg⁻¹; acidity expressed as formic acid <0.2; fiche’s test negative</td>
</tr>
<tr>
<td>Germany</td>
<td>Guidelines: Characteristics of monofloral honeys: electrical conductivity mS.cm⁻¹, >1.0 pine, >1.1 fir, 0.8–2.0 castanea, >0.50 erica, 0.10–0.30 citrus, 0.20–0.40 helianthus, >0.20 robinia, >0.70 calluna, 0.20–0.30 trifolium, <0.22 brassica; fru/glu ratio >1.20 pine, >1.15 fir, >1.45 castanea, 1.00–1.30 erica, >1.10 citrus, >1.10 helianthus, >1.15 robinia, >1.20 calluna, >1.30 trifolium, <1.10 brassica, >1.05 eucalyptus spp., >1.10 tilia, >1.00 picea; HMF<15 mg.kg⁻¹ Auslese grade, <10 mg.kg⁻¹ Feine Auslese grade; invertase >60 U.kg⁻¹ Auslese grade, >80 U.kg⁻¹ Feine Auslese grade; moisture<18% Auslese grade and Feine Auslese grade</td>
</tr>
<tr>
<td>Greece</td>
<td>Provisions: electrical conductivity mS cm⁻¹ >0.9 pine, >1.0 fir, >1.1 castanea, <0.6 thyme, <0.45 citrus; moisture <18.5% fir</td>
</tr>
<tr>
<td>Japan</td>
<td>Provisions: fru+glu >60%; sucrose <5%; HMF <59 mg.kg⁻¹ fair trade, <15 mg.kg⁻¹ health and nutrition First grade, <40 mg.kg⁻¹ health and nutrition Second grade; electrical conductivity <0.80 mS cm⁻¹; starch and dextrin negative; heavy metals (as Pb) <20 mg.kg⁻¹</td>
</tr>
<tr>
<td>Poland</td>
<td>Provisions: electrical conductivity mS.cm⁻¹ 0.2–0.6 fl, 0.6–0.8 fl+hd (natural mixed), >0.8 hd deciduous trees, >0.95 hd coniferous; proline >250 mg.kg⁻¹; HMF >30 mg.kg⁻¹; acidity >10–50 meq.kg⁻¹</td>
</tr>
<tr>
<td>Russia</td>
<td>Provisions: diastase: >7 DN; >5 DN acacia; >11 DN linden; >15 DN sunflower; >18 DN buckwheat</td>
</tr>
<tr>
<td>Serbia</td>
<td>Provisions: electrical conductivity mS.cm⁻¹ 1.00 fl & blends, >1.00 hd & blends; reducing sugars >65% fl, >60% hd; sucrose <5% fl, <10% calluna and clover, <10% hd; minerals<1% fl, <1.2% hd; total acidity <40 mmol formic acid per 1000 g</td>
</tr>
<tr>
<td>Slovakia</td>
<td>Provisions: moisture <18%; HMF <20 mg.kg⁻¹</td>
</tr>
<tr>
<td>Turkey</td>
<td>Provisions: fru/glu ratio 0.9 – 1.4 fl, 1.0–1.85 castanea, 1.2–1.85 acacia, 1.0–1.65 thyme, 1.0–1.4 hd; difference between protein and honey delta C13 –1.0 or more positive; C4 sugars ratio calculated from difference between protein and honey delta C13 (max) <7%; proline >300 mg.kg⁻¹; >180 mg.kg⁻¹ canola, lime, citrus, lavender, eucalyptus honeys, >120 mg.kg⁻¹ rosemary, acacia honeys, >180 mg.kg⁻¹ bakery honey; sucrose <5%, <10% hd P. brutia and P. pinea; fru/gl 1.0–1.4; water-insoluble solids <0.1%; free acidity <50 meq.kg⁻¹; electrical conductivity <0.8 mS.cm⁻¹, >0.8 mS.cm⁻¹ mixture of chestnut and hd; naphthalene <10 µg.kg⁻¹</td>
</tr>
</tbody>
</table>

*Provisions: Legal legislation of a country. Stipulation: is a formal acknowledgement and agreements without legal status. Decision: Specifications that are decided by control bodies. Guidelines: These are not a law, but have the status of a legal norm.

fl: floral honey.
hd: honeydew honey, when no indication means all kinds of honey.

In opposite to the above countries that set lower moisture content, two countries India and China raise the moisture limit above 20% and at the same time they designated grades: India has the special grade honey with moisture content <20%, the grade A with moisture <22% and the standard grade honey with moisture <25%. China has the grade A with moisture <20% and the grade B with moisture <24%.

HMF and diastase

Table 3 indicates that another criterion that is differentiated from Directive and Codex and mostly used to designate quality grades is HMF. More austere criteria were set by Czech Republic (<20 mg.kg⁻¹), Germany (Auslese...
grade <15 mg.kg\(^{-1}\) and feine Auslese grade <10 mg.kg\(^{-1}\)); Slovakia (<20 mg.kg\(^{-1}\)), Poland (<30 mg.kg\(^{-1}\)) and Japan (<35 mg.kg\(^{-1}\)). Colombia adopted HMF <60 mg.kg\(^{-1}\) instead of 80 mg.kg\(^{-1}\) for honey from tropical countries. More loose criteria for HMF were set by Korea (>80 mg.kg\(^{-1}\)), and India (>80 mg.kg\(^{-1}\)) (Bureau of Indian Standards [BIS], 2002).

Polish Norm (Polska Norma Polish Norm PN-88/A77626) which has a “supporting character” to the Directive parameters laid diastase activity >8.3 DN. China lowers the standards to >4 DN with the exceptions of Eucalyptus, Citrus sangria, and Murasaki mokushuku honey that may have >2 DN. Colombia accepted diastase >3 DN and India, South Korea and Japan have no provisions for diastase. Russia is the only country that has different limits of diastase for different kinds of honey. It has the “Honey natural-Technical Regulation” (Russia GOST 19792-2001) which is a set of technical regulations which contains characteristics of quality and safety of blossom honey and described at COST R 52451-2005. According to that regulation for all honey types, the limits are >7 DN, for acacia >5 DN, for lin- den >11 DN, for sunflower >15 DN, for buckwheat >18 DN and for honey types that are low in natural enzymes >3 DN providing that HMF is less than 15 mg.kg\(^{-1}\).

Sugars

We found no differences in countries legislation regarding the specification of the sum of glucose and fructose either to flora or honeydew honey. An exception to this is the countries of China and Japan which set minimum 60% for all honey (including honeydew honey). In addition, these two countries set electrical conductivity <0.8 mS.cm\(^{-1}\) for all honey and by these two provisions honeydew honey would have difficulties to trade in China and Japan. Countries like Argentina, Brazil, Canada, Colombia, Ethiopia, India, Russia and Serbia continue using the parameter of apparent reducing sugars. All set >65% for floral honey and >60% for honeydew honey with the exception of Indian standards that set >70% for special grade and >65% for grades A and standard. The above countries kept also in their legislation the apparent sucrose content which has not the same conformity as reducing sugars have. Thus, apparent sucrose in Argentina is set <8% for floral and <10% for honeydew honey, in Brazil <6%, in Canada and Colombia <5%, in the Czech Republic, and Ethiopia <10%. Countries that follow the specifications of Codex and Directive and differentiated from the sucrose content are Colombia and Turkey. Turkey adopted <10% for honeydew honey from Pinus brutia.

Geographical origin

European countries with national decisions for declaration of country of origin for honey blends is Italy (Piro Roberto, personal communication), Greece (AXS Decision, 2015) and Cyprus (Cyprus, 2015). The decision is valid only for honey that is packed in those countries. If a company manufactures in another European country, it follows the requirements of EU Directive.

Other parameters

Specifications that have been legislated by different countries and differ from the established or suggested parameters of Codex and Directive are the ash content (Argentina, Canada, China, India), the starch and dextrin (Argentina, Japan) the fructose/glucose ratio (Germany, Turkey), the invertase (Germany, Turkey) and the proline (Poland, Turkey). In addition to that Turkish Food Codex Honey regulation (2012) legislated the difference between protein and honey delta C13, the C4 sugars ratio and maximum limit for naphthalene while Japan set limits for heavy metals.

Countries like Bulgaria, Cyprus, England, France, Malta, Slovenia, Spain and Switzerland have been fully harmonized with EU legislation without different national decisions. Algeria has not legislation on bee product although this country has a very long tradition of beekeeping and USA is in the process to adopt new regulations on honey.

Concluding remarks

In this review, we have indicated that there are differences in legislation and standards that regulate honey in different countries. The causes of these differences are the diverse provisions in characteristics of honey that had been adopted by different countries, the geographical indication, the absence of characterization of monofloral honeys, the inconsistency of the parameters of monofloral honey, the grading of honey that promote domestic honey and the degrading of domestic honey that promote selling. The effects of these differences are unfair competition, misleading of consumers about honey quality and commercial barriers and obstacles in honey trading.

It is necessary to cope with the chaos that exists in international legislation by adopting minimum requirements as mandatory for all countries that produce, import or export honey. Some suggestion would be the amendment of the Codex honey definition to include the name species of A. mellifera; the European directive should adopt the country of origin, including blends, as one of the mandatory requirement of the label; The name of the product could be accompanied by botanical origin (optional) when the organoleptic, microscopical and physicochemical characteristics of each category of honey will be decided and legislated. Data published by IHC (Persano Oddo et al., 2004) could be useful for having an agreement for the major types of monofloral honey. Further work is needed for those monofloral honey types that are not included in the descriptive sheet of IHC.
Regarding the necessary criteria and standards, the set limits of HMF (<40 mg.kg\(^{-1}\)) and diastase (>8 DN) should be mandatory for all countries. In addition, all countries should have the right to optionally set stricter limits to a decided level, for all imported and domestic honey. The limit of not less than 3 DN diastase, when HMF does not exceed 15 mg.kg\(^{-1}\) and no exogenous sugars are detected, could be adopted for honey with naturally low enzymes. Instead of sugars (sum of fructose and glucose, apparent reducing sugars, fructose/glucose ratio), a method of detection of honey adulteration with exogenous sugars (13C/12C isotopic ratio) would be more efficient to describe honey authenticity. We should further consider whether the limit of free acidity and water content should be decreased and the requirement of optical rotation in combination with the electrical conductivity for the differentiation of floral from honeydew honey.

Besides these minimum and obligatory norms, each country may adopt additional parameters which could describe the domestic honey types, providing that these parameters would not discriminate against imported honey and would not be mandatory.

Acknowledgements

We are grateful to the following members of IHC who kindly provided information regarding the legislation of their country: Andrea Kandolf Borovšak, Antonio Bentabol Manzanares, Asli Elf Sunay, Birgit Lichtenberg-Kraag, Carlos Alberto Fuenmayor Bobadilla, Daibor Titera, Dinko Dinkov, Dragan Bubalo, Elena Zubova, Everaldo Attard, Gian Luigi Marazzan, Gudrun Beckh, Jaume Cambra Sánchez, Katarina Bilkova, Kristina Lazarevic, Lígia Bicudo de Almeida-Muradian, Lutz Elfein, Maria Miquel, Marie Warner, Martha Quicazan, Mojca Korosec, Monique Morlot, Nuru Adgaba, Patricia Beune, Peter Gallmann, Robert Chlebo, Roberto Piro, Smela Dana, Susanne Hanewinkel-Meshkini, Teresa Szczesna, Zheko Radev, Veronica Kmecl, Visnjia Radovic, Wahida Loucif, Werner Van Ohe, Wim Reybroeck.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Andreas Thrasvouliou http://orcid.org/0000-0001-6731-4184
Chrysovala Tzanakaki http://orcid.org/0000-0002-0056-483X
Georgios Goras http://orcid.org/0000-0003-0740-3454
Emmanuel Karazafiris http://orcid.org/0000-0002-7103-0288
Maria Dimou http://orcid.org/0000-0003-1482-8290
Vassilis Liliar http://orcid.org/0000-0001-7353-2364
Dimitris Kanelis http://orcid.org/0000-0001-7736-4783
Sophia Gounari http://orcid.org/0000-0003-3417-7800

References

Thrasyvoulou, A. (2013). Σε αναζήτηση της εφαρμογής της εθνικής απόφασης που αφορά τα ελληνικά μέλια [In searching of the validity of the National decision regarding the imported honeys]. *Melissokomiki Epitheorisis*, 27(4), 250–251 (in Greek).

Turkish Food Codex. (2012). Ministry of food, agriculture and livestock: Turkish food codex bal communication (communication no: 2012/58).